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My collaboration with
Julia ROBINSON

The name of Julia Robinson cannot be separated from Hilbert’s tenth
problem. This is one of the 23 problems stated by David Hilbert in 1900.
The section of his famous address [4] devoted to the Tenth Problem is so
short that it can be cited here in full:

10. DETERMINATION OF THE SOLVABILITY OF A
DIOPHANTINE EQUATION

Given a Diophantine equation with any number of unknown quan-
tities and with rational integral numerical coefficients: To devise a
process according to which it can be determined by a finite number
of operations whether the equation is solvable in rational integers.

The tenth problem is the only one of the 23 problems that is (in today’s
terminology) a decision problem, i.e., a problem consisting of infinitely many
individual problems each of which requires a definite answer: YES or NO. The
heart of a decision problem is the requirement to find a single method that
will give an answer to any individual subproblem. Since Diophantus’s time,
number-theorists have found solutions for a large number of Diophantine
equations and also have established the unsolvability of a large number of
other equations. Unfortunately, for different classes of equations and even
for different individual equations, it was necessary to invent different specific
methods. In the tenth problem, Hilbert asks for a universal method for
deciding the solvability of Diophantine equations.

1This paper was originally published in The Mathematical Intelligencer, vol.14, no.4,
1992, pp.38-45; corrections in vol.15, no.1, 1993, p. 75. The paper was reproduced in:
Constance Reid. JULIA. A Life in Mathematics. The mathematical Association of Amer-
ica, 1996; ISBN 0-88385-520-8. With the kind permission from the Publisher the paper is
made available on WWW via URL: http://logic.pdmi.ras.ru/~yumat/Julia .
French translation of the paper was published in Gazette des Mathèmaticiens, 59, pp.27–

44, 1994, and was reprinted as a suplement to the French translation of the author’s book:
Youri Matiiassevitch, Le dixième problème de Hilbert, Masson, 1995.
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A decision problem can be solved in a positive or in a negative sense, by
discovering a proper algorithm or by showing that none exists. The general
mathematical notion of algorithm was developed by A. Church, K. Gödel,
A. Turing, E. Post, and other logicians only 30 years later, but in his lecture
[4] Hilbert foresaw the possibility of negative solutions to some mathematical
problems.

I have to start the story of my collaboration with Julia Robinson by
telling about my own involvement in the study of Hilbert’s tenth problem.
I heard about it for the first time at the end of 1965 when I was a sopho-
more in the Department of Mathematics and Mechanics of Leningrad State
University. At that time I had already obtained my first results concerning
Post’s canonical systems, and I asked my scientific adviser, Sergel Maslov
(see [3]), what to do next. He answered: “Try to prove the algorithmic un-
solvability of Diophantine equations. This problem is known as Hilbert’s
tenth problem, but that does not matter to you.” — “But I haven’t learned
any proof of the unsolvability of any decision problem.” — “That also does
not matter. Unsolvability is nowadays usually proved by reducing a problem
already known to be unsolvable to the problem whose unsolvability one needs
to establish, and you understand the technique of reduction well enough.” —
“What should I read in advance?” — “Well, there are some papers by Amer-
ican mathematicians about Hilbert’s tenth problem, but you need not study
them.” — “Why not?” — “So far the Americans have not succeeded, so their
approach is most likely inadequate.”

Maslov was not unique in underestimating the role of the previous work
on Hilbert’s tenth problem. One of these papers was by Martin Davis, Hilary
Putnam, and Julia Robinson [2], and even the reviewer of it for Mathematical
Reviews stated:

These results are superficially related to Hilbert’s tenth problem
on (ordinary, i.e., non-exponential) Diophantine equations. The
proof of the authors’results, though very elegant, does not use
recondite facts in the theory of numbers nor in the theory of r.e.
[recursively enumerable] sets, and so it is likely that the present
result is not closely connected with Hilbert’s tenth problem. Also
it is not altogether plausible that all (ordinal) Diophantine prob-
lems are uniformly reducible to those in a fixed number of vari-
ables of fixed degree, which would be the case if all r.e. sets were
Diophantine.
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The reviewer’s skepticism arose because the authors of [2] had considered
not ordinary Diophantine equations (i.e., equation form

P (x1, x2, . . . , xm) = 0 (1)

where P is a polynomial with integer coefficients) but a wider class of so-
called exponential Diophantine equations. These are equations of the form

E1(x1, x2, . . . , xm) = E2(x1, x2, . . . , xm) (2)

where E1 and E2 are expressions constructed from x1, x2,. . . , xm and par-
ticular natural numbers by addition, multiplication, and exponentiation. (In
contrast to the formulation of the problem as given by Hilbert, we assume
that the variables range over the natural numbers, but this is a minor tech-
nical alteration.)

Besides single equations, one can also consider parametric families of
equations, either Diophantine or exponential Diophantine. Such a family

Q(a1, . . . , an, x1, . . . , xm) = 0 (3)

determines a relation between the parameters a1, . . . , an which holds if and
only if the equation has a solution in the remaining variables, called un-
knowns. Relations that can be defined in this way are called Diophantine
or exponential Diophantine according to the equation used. Similarly, a set
M of n-tuples of natural numbers is called (exponential) Diophantine if the
relation “to belong to M” is (exponential) Diophantine. Also a function is
called (exponential) Diophantine if its graph is so.

Thus, in 1965 I did not encounter even the name of Julia Robinson.
Instead of suggesting that I first study her pioneer works, Maslov proposed
that I try to prove the unsolvability of so-called word equations (or equations
in a free semigroup) because they can be reduced to Diophantine equations.
Today we know that this approach was misleading, because in 1977 Gennadii
Makanin found a decision procedure for word equations.

I started my investigations on Hilbert’s tenth problem by showing that a
broader class of word equations with additional conditions on the lengths of
words is also reducible to Diophantine equations. In 1968, I published three
notes on this subject. I failed to prove the algorithmic unsolvability of such
extended word equations (this is still an open problem), so I then proceeded
to read “the papers by some American mathematicians” on Hilbert’s tenth
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problem. (Sergei Adjan had initiated and edited translations into Russian of
the most important papers on this subject; they were published in a single
issue of Математика, a journal dedicated to translated papers.) After
the paper by Davis, Putnam, and Robinson mentioned above, all that was
needed to solve Hilbert’s tenth problem in the negative sense was to show that
exponentiadon is Diophantine; i.e., to find a particular Diophantine equation

A(a, b, c, x1, . . . , xm) = 0 (4)

which for given values of the parameters a, b, and c has a solution in x1, . . . ,
xm if and only if a = bc. With the aid of such an equation, one can easily
transform an arbitrary exponential Diophantine equation into an equivalent
Diophantine equation with additional unknowns.

As it happens, this same problem had been tackled by Julia Robinson
at the beginning of the 1950s. According to “The Autobiography of Ju-
lia Robinson” [11], Julia’s interest was originally stimulated by her teacher,
Alfred Tarski, who suspected that even the set of all powers of 2 is not
Diophantine. Julia Robinson, however, found a sufficient condition for the
existence of a Diophantine representation (4) for exponentiation; namely, to
construct such an A, it is sufficient to have an equation

B(a, b, x1, . . . , xm) = 0 (5)

which defines a relation J(a, b) with the following properties:

• for any a and b, J(a, b) implies that a < bb;

• for any k, there exist a and b such that J(a, b) and a > bk.

Julia Robinson called a relation J with these two properties a relation of
exponential growth; today such relations are also known as Julia Robinson
predicates.

My first impression of the notion of a relation of exponential growth was
“what an unnatural notion”, but I soon realized its important role for Hilbert’s
tenth problem.

I decided to organize a seminar on Hilbert’s tenth problem. The first
meeting where I gave a survey of known results was attended by five logicians
and five number-theorists, but then the numbers of participants decreased
exponentially and soon I was left alone.
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I was spending almost all my free time trying to find a Diophantine re-
lation of exponential growth. There was nothing wrong when a sophomore
tried to tackle a famous problem, but it looked ridiculous when I continued
my attempts for years in vain. One professor began to laugh at me. Each
time we met he would ask: “Have you proved the unsolvability of Hilbert’s
tenth problem? Not yet? But then you will not be able to graduate from the
university!”

Nevertheless I did graduate in 1969. My thesis consisted of my two early
works on Post canonical systems because I had not done anything better
in the meantime. That same year I became a post-graduate student at the
Steklov Institute of Mathematics of the Academy of Sciences of the USSR
(Leningrad Branch, LOMI). Of course, the subject of my study could no
longer be Hilbert’s tenth problem.

One day in the autumn of 1969 some of my colleagues told me: “Rush
to the library. In the recent issue of the Proceedings of the American Math-
ematical Society there is a new paper by Julia Robinson!” But I was firm
in putting Hilbert’s tenth problem aside. I told myself. “It’s nice that Julia
Robinson goes on with the problem, but I cannot waste my time on it any
longer.” So I did not rush to the library.

Somewhere in the Mathematical Heavens there must have been a God
or Goddess of Mathematics who would not let me fail to read Julia Robin-
son’s new paper [15]. Because of my early publications on the subject, I
was considered a specialist on it and so the paper was sent to me to review
for Реферативный журнал Математика, the Soviet counterpart of Math-
ematical Reviews. Thus, I was forced to read Julia Robinson’s paper, and on
December 11, I presented it to our logic seminar at LOMI.

Hilbert’s tenth problem captured me again. I saw at once that Julia
Robinson had a fresh and wonderful idea. It was connected with the special
form of Pell’s equation

x2 − (a2 − 1)y2 = 1. (6)

Solutions 〈χ0, ψ0〉, 〈χ1, ψ1〉, . . . , 〈χn, ψn〉, . . . of this equation listed in the
order of growth satisfy the recurrence relations

χn+1 = 2aχn − χn−1,

ψn+1 = 2aψn − ψn−1, (7)

It is easy to see that for any m the sequences χ0, χ1, . . . , ψ0, ψ1, . . . are
purely periodic modulo m and hence so are their linear combinations. Fur-
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ther, it is easy to check by induction that the period of the sequence

ψ0, ψ1, . . . , ψn, . . . (mod a− 1) (8)

is
0, 1, 2, ..., a− 2, (9)

whereas the period of the sequence

χ0 − (a− 2)ψ0, χ1 − (a− 2)ψ1, . . . , χn − (a− 2)ψn, . . . (mod 4a− 5) (10)

begins with
20, 21, 22, . . . (11)

The main new idea of Julia Robinson was to synchronize the two se-
quences by imposing a condition G(a) which would guarantee that

the length of the period of (8) is a multiple
of the length of the period of (10). (12)

If such a condition is Diophantine and is valid for infinitely many values
of a, then one can easily show that the relation a = 2c is Diophantine. Julia
Robinson, however, was unable to find such a G and, even today, we have no
direct method for finding one.

I liked the idea of synchronization very much and tried to implement it in
a slightly different situation. When, in 1966, I had started my investigations
on Hilbert’s tenth problem, I had begun to use Fibonacci numbers and had
discovered (for myself) the equation

x2 − xy − y2 = ±1 (13)

which plays a role similar to that of the above Pell’s equation; namely, Fi-
bonacci numbers φn and only they are solutions of (13). The arithmetical
properties of the sequences ψn and φn are very similar. In particular, the
sequence

0, 1, 3, 8, 21.... (14)

of Fibonaccl numbers with even indices satisfies the recurrence relation

φn+1 = 3φn − φn−1 (15)

6



similar to (7). This sequence grows like [(3+
√

5)/2]n and can be used instead
of (11) for constructing a relation of exponential growth. The role of (10)
can be played by the sequence

ψ0, ψ1, . . . , ψn, . . . (mod a− 3) (16)

because it begins like (14). Moreover, for special values of a the period can
be determined explicitly; namely, if

a = φ2k + φ2k+2, (17)

then the period of (16) is exactly

0, 1, 3, . . . , φ2k,−φ2k, . . . ,−3, 1. (18)

The simple structure of the period looked very promising.
I was thinking intensively in this direction, even on the night of New

Year’s Eve of 1970, and contributed to the stories about absentminded math-
ematicians by leaving my uncle’s home on New Year’s Day wearing his coat.
On the morning of January 3, I believed I had found a polynomial B as in
(5) but by the end of that day I had discovered a flaw in my work. But the
next morning I managed to mend the construction.

What was to be done next? As a student I had had a bad experience when
once I had claimed to have proved unsolvability of Hilbert’s tenth problem,
but during my talk found a mistake. I did not want to repeat such an embar-
rassment, and something in my new proof seemed rather suspicious to me. I
thought at first that I had just managed to implement Julia Robinson’s idea
in a slightly different situation. However, in her construction an essential
role was played by a special equation that implied one variable was exponen-
tially greater than another. My supposed proof did not need to use such an
equation at all, and that was strange. Later I realized that my construction
was a dual of Julia Robinson’s. In fact, I had found a Diophantine condition
H(a) which implied that

the length of the period of (16) is a multiple
of the length of the period of (8). (19)

This H, however, could not play the role of Julia Robinson’s G, which re-
sulted in an essentially different construction.
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I wrote out a detailed proof without finding any mistake and asked Sergel
Maslov and Vladimir Lifshits to check it but not to say anything about it
to anyone else. Earlier, I had planned to spend the winter holidays with my
bride at a ski camp, so I left Leningrad before I got the verdict from Maslov
and Lifshits. For a fortnight I was skiing, simplifying the proof, and writing
the paper [6]. I tried to convey the impact of Julia Robinson’s paper [15]
on my work by a rather poetic Russian word навеять, which seems to have
no direct counterpart in English, and the later English translator used plain
“suggested”.

On my return to Leningrad I received confirmation that my proof was cor-
rect, and it was no longer secret. Several other mathematicians also checked
the proof, including D.K. Faddeev and A.A.Markov, both of whom were fa-
mous for their ability to find errors. On 29 January 1970 at LOMI I gave
my first public lecture on the solution of Hilbert’s tenth problem. Among
my listeners was Grigorǐı Tseitin, who shortly afterwards attended a confer-
ence in Novosibirsk. He took a copy of my manuscript along and asked my
permission to present the proof in Novosibirsk. (It was probably due to this
talk that the English translation of [6] erroneously gives the Siberian Branch
instead of the Leningrad Branch as my address.) Among those who heard
Tseltin’s talk in Novosibirsk was John McCarthy. In “The Autobiography”
[11], Julia Robinson recalls that on his return to the United States McCarthy
sent her his notes on the talk. This was how Julia Robinson learned of my
example of a Diophantine relation of exponential growth. Later, at my re-
quest, she sent me a copy of McCarthy’s notes. They consisted of only a few
main equations and lemmas, and I believe that only a person like Julia, who
had already spent a lot of time intensively thinking in the same direction,
would have been able to reconstruct the whole proof from these notes as she
did.

In fact, Julia herself was very near to completing the proof of the unsolv-
ability of Hilbert’s tenth problem. The question sometimes asked is why she
did not. (This question is also touched upon in [11]). In fact, several authors
(see [7] for further references) showed that ψ’s can be used instead of φ’s for
constructing a Diophantine relation of exponential growth. My shift from
(12) to (19) redistributed the difficulty in the entire construction. The path
from a Diophantine H to a Diophantine relation of exponential growth is not
as straightforward as the path from Julia Robinson’s G would have been. On
the other hand, it turned out that to construct an H is much easier than to
construct a G.

8



In [6], I used for this purpose a lemma stating that

φ2
n | φm ⇒ φn | m. (20)

It is not difficult to prove this remarkable property of Fibonacci numbers
after it has been stated, but it seems that this beautiful fact was not discov-
ered until 1969. My original proof of (20) was based on a theorem proved
by the Soviet mathematician Nikolal Vorob’ev in 1942 but published only in
the third augmented edition of his popular book [18]. (So the translator of
my paper [6] made a misleading error by changing in the references the year
of publication of [18] from 1969 to 1964, the year of the second edition.) I
studied the new edition of Vorob’ev’s book in the summer of 1969 and that
theorem attracted my attention at once.

I did not deduce (20) at that time, but after I read Julia Robinson’s
paper [15] I immediately saw that Vorob’ev’s theorem could be very useful.
Julia Robinson did not see the third edition of [18] until she received a copy
from me in 1970. Who can tell what would have happened if Vorob’ev had
included his theorem in the first edition of his book? Perhaps Hilbert’s tenth
problem would have been “unsolved” a decade earlier!

The Diophantine definition of the relation of exponential growth in [6]
had 14 unknowns. Later I was able to reduce the number of unknowns to
5. In October 1970, Julia sent me a letter with another definition also in
only 5 unknowns. Having examined this construction, I realized that she
had used a different method for reducing the number of unknowns and we
could combine our ideas to get a definition in just 3 unknowns! This was the
beginning of our collaboration.

It was conducted almost entirely by correspondence. At that time there
was no electronic mail anywhere and it took three weeks for a letter to cross
the ocean. One of my letters was lost in the mail and I had to rewrite 11
pages (copying machines were not available to me). On the other hand, this
situation had its own advantage: Today I have the pleasure of rereading a
collection of letters written in Julia’s hand. Citations from these letters are
incorporated into this paper.

One of the corollaries of the negative solution of Hilbert’s tenth prob-
lem (implausible to the reviewer for Mathematical Reviews) is that there is
a constant N such that, given a Diophantine equation with any number of
parameters and in any number of unknowns, one can effectively transform
this equation into another with the same parameters but in only N unknowns
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such that both equations are solvable or unsolvable for the same values of
the parameters. In my lecture at the Nice International Congress of Mathe-
maticians in 1970 I reported that this N could be taken equal to 200. This
estimate was very rough. Julia and her husband, Raphael, were interested in
getting a smaller value of N, and in the above-mentioned letter Julia wrote
that they had obtained N = 35. Our new joint construction of a Diophantine
relation of exponential growth with 3 (instead of 5) unknowns automatically
reduced N to 33. Julia commented: “I consider it in the range of ‘practical’
number theory, since Davenport once wrote a paper on cubic forms in 33
variables.” Julia sent me a detailed proof of this reduction, and it became
the basis for our further work.

We were exchanging letters and ideas and gradually reducing the value
of N further. In February 1971, I sent a new improvement that reduced N
to 26 and commented that now we could write equations in Latin characters
without subscripts for unknowns. Julia called it “breaking the ‘alphabetical’
barrier.” In August 1971, I reported to the IV International Congress on
Logic, Methodology and Philosophy of Science in Bucharest on our latest
result: any Diophantine equation can be reduced to an equation in only 14
unknowns [7]. At that Congress Julia and I met for the first time. After the
Congress I had the pleasure of meeting Julia and Raphael in my native city
of Leningrad.

“With just 14 variables we ought to be able to know every variable per-
sonally and why it has to be there,” Julia once wrote to me. However, in
March 1972 the minimal number of unknowns unexpectedly jumped up to
15 when she found a mistake in my count of the number of variables! I would
like to give the readers an idea of some of the techniques used for reducing
the number of unknowns and to explain the nature of my mistake. Actually,
we were constructing not a single equation but a system of equations in a
small number of unknowns. (Clearly, a system A = B = · · · = D = 0 can
be compressed into single equation A2 + B2 + · · · + D2 = 0.) Some of the
equations used in our reduction were Pell equations:

x21 − d1y21 = 1,

x22 − d2y22 = 1. (21)

We can replace these two Diophantine equations by a single one:

Π
(
x±

√
1 + d1y21 ± (1 + d1y

2
1)
√

1 + d2y22

)
= 0, (22)
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where the product is over all the four choices of signs ±. In the remaining
equations, we substitute

√
1 + d1y21 for x1,

√
1 + d2y22 for x2, and eliminate

the square roots by squaring. Thus, we reduce the total number of unknowns
by one by introducing x but eliminating x1 and x2. It was in the count of
variables, introduced and eliminated, that I made my error.

The situation was rather embarrassing for us because the result had been
announced publicly. I tried to save the claimed result, but having no new
ideas, I was unable to reduce the number of unknowns back to 14. Soon I
got a new letter from Julia. She tried to console me: “I think mistakes in
reasoning are much worse than arithmetical ones which are sort of funny.”
But more important, she came up with new ideas and managed to reduce
the number of unknowns to 14 again, thus saving the situation.

We discussed for some time the proper place for publishing our joint
paper. I suggested the Soviet journal Известия АН СССР. The idea of
having a paper published in Russian was attractive to Julia. (Her paper
[16] had been published in the USSR in English in spite of what is said
in Mathematical Reviews.) On the other hand, she wanted to attract the
attention of specialists in number theory to the essentially number-theoretical
results obtained by logicians, so she suggested Acta Arithmetica. Finally, we
decided that we had enough material for several papers and would publish
our first joint paper in Russian in Известия and our second one somewhere
else in English.

We found writing out a paper when we were half a world apart quite
an ordeal. Later Julia wrote to me: “It seems to me that we had little
trouble in collaborating mathematically on 4-week turn-around time but it
is hopeless when it comes to writing the results up. Namely, by the time you
could answer a question, it was no longer relevant.” We decided that one of
us would write the whole manuscript, which was then to be subject to the
other’s criticism. Because the first paper was to be in Russian, I wrote the
first draft (more than 60 typewritten pages) and sent it to Julia in autumn
1972. Of course, she found a number of misprints and small errors but, in
general, she approved it.

The reader need not search the literature for a reference to this paper
because that manuscript has never been published! In May 1973, I found “a
mistake in reasoning.” The mistake was the use of the incorrect implication

a ≡ b (mod q) ⇒
(
a

c

)
≡
(
b

c

)
(mod q). (23)
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The entire construction collapsed. I informed Julia and she replied:

I was completely flabbergasted by your letter of May 11. I wanted
to crawl under a rock and hide from myself! Somehow I had never
questioned that

(
a
c

)
≡
(
b
c

)
(mod a− b). I usually know enough

not to divide by zero. I had even mentioned (asserted) it to
Raphael several times and he had not objected. He said he would
have said ‘no’ if I had asked if it were true. I guess I would have
myself if I had asked!

Earlier, we had discussed a similar situation, and in 1971 Julia had written
to me: “Almost all mathematical mistakes come about from not writing out
proofs and especially making changes after the proof is written out” But
that was not the case this time. The mistake was present from an early
stage and was not detected either when one mathematician (myself) wrote
out a detailed proof or when another mathematician (Julia) carefully read it.
Luckily, this time I was able to repair the proof on the spot. Julia wrote: “I
am very glad you sent a way around the mistake at the same time you told
me about it” However, the manuscript had to be completely rewritten.

In 1973, the prominent Soviet mathematician A.A.Markov celebrated
his seventieth birthday. His colleagues from the Computing Center of the
Academy of Sciences of the USSR decided to publish a collection of papers
in his honor. I was invited to contribute to the collection. I suggested a joint
paper with Julia Robinson, and the editors agreed. Because of the imminent
deadline, we had no time to discuss the manuscript. I just asked Julia to
authorize me to write the paper and to send it to the editors without her
approval. Later I would incorporate her suggestions on the proofsheets. She
agreed.

So our first joint publication [9] appeared, and it was in Russian. The
paper was a byproduct of our main investigations on reduction of the number
of unknowns in Diophantine equations. The first theorem stated that given a
parametric Diophantine equation (3) we can effectively find polynomials with
integer coefficients P1, D1, Q1, . . . , Pk, Dk, Qk such that the Diophantine
relation defined by (3) is also defined by the formula

∃x∃y
k

&
i=1
∃z[Pi(a1, . . . , an, x, y) <

Di(a1, . . . , an, x, y)z < Qi(a1, . . . , an, x, y)]. (24)
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While k can be a particular large fixed number, each equation involves only
3 unknowns.

The second theorem states that we can also find polynomials F and W
such that the same relation is defined by the formula

∃x∃y∀z[z ≤ F (a1, . . . , an, x, y) ⇒ W (a1, . . . , an, x, y, z) > 0]. (25)

This formula also has only 3 quantifiers but the third is a (bounded) universal
one. Such representations have a close connection to equations because the
main technical result of [2] is a method for eliminating a single bounded
quantifier at the cost of introducing several extra existential quantifiers and
allowing exponentiation to come into the resulting purely existential formula.

One of Julia’s requests in regard to this paper was that her first name
should be given. She had good reason for that. I had been the Russian
translator of one of the fundamental papers on automatic theorem-proving by
John A.Robinson [12]. When the translation appeared in 1970 in a collection
of important papers on that subject, Soviet readers saw the names of a
Дж.Робинсон as the author of a paper translated by Ю.Матиясевич and
М.Дэвис as the author of another fundamental paper on automatic theorem-
proving. In the minds of many, these three names were associated with the
recent solution of Hilbert’s tenth problem so a number of people got the idea
that it was Julia Robinson who had invented the resolution principle, the
main tool from [12]. To add to the confusion, John Robinson in his paper
thanked George Robinson, whose name in Russian translation also becomes
Дж.Робинсон.

As a student I had made “a mistake of the second kind”: I did not identify
J.Robinson, the author of a theorem in game theory, with J.Robinson, the
author of important investigations on Hilbert’s tenth problem. (In fact, Ju-
lia’s significant paper [13] was her only publication on game theory.) Julia’s
request was agreed to by the editors, and as a result our joint paper [9] is
the only Russian publication where my first name is given in full.

This short paper was a by-product of our main investigation, which was
still to be published. As it had been decided beforehand that our second
publication should be in English, Julia wrote the new paper about the re-
duction of the number of unknowns. Now we were able to eliminate one more
variable and so had only “a baker’s dozen” of unknowns.

The second paper [10] was published in Acta Arithmetica. We had a
special reason for this choice because the whole volume was dedicated to
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the memory of the prominent Soviet mathematician Yu. V. Linnik, whom
we both had known personally. I was introduced to him soon after show-
ing Hilbert’s tenth problem to be unsolvable. Someone had told Linnik the
news beginning with one of the corollaries: “Matiyasevich can construct a
polynomial with integer coefficients such that the set of all natural number
values assumed by this polynomial for natural number values of the variables
is exactly the set of all primes.” “That’s wonderful,” Linnik replied. “Most
likely we soon shall learn a lot of new things about primes.” Then it was
explained to him that the main result is in fact much more general: Such a
polynomial can be constructed for every recursively enumerable set, i.e., a
set the elements of which can be listed in some order by an algorithm. “It’s
a pity,” Linnik said. “Most likely, we shall not learn anything new about the
primes.”

Since there was some interest in our forthcoming paper with the proof
of a long-announced result becoming at last accessible to other researchers,
numerous copies were circulated. We had exhausted our ideas but there
was a chance that someone with a fresh view of the subject might improve
our result. “Of course there is the possibility that someone will make a
breakthrough and supersede our paper too,” Julia wrote, “but we should think
of that as being good for mathematics!” Raphael, on the other hand, believed
that 13 unknowns would remain the best result for decades. Actually, the
record fell even before our paper appeared. The required “new idea” turned
out, as so often happens, to be an old one that had been forgotten.

In this case, it was the following nice result by E.E.Kummer: the greatest
power of a prime p which divides the binomial coefficient

(
a+b
b

)
is pc, where c

is the number of carries needed when adding a and b written to base p. This
old result was rediscovered and reproved a number of times and I was lucky
to learn it from the review of [17] in Реферативный журнал Математика.
Kummer’s theorem turned out to be an extremely powerful tool for con-
structing Diophantine equations with special properties. (Julia once called
it “a gold mine”.) It would be too technical to explain all the applications,
but one of them can be given here.

Let p be a fixed prime and let f be a map from {0, 1, . . . , p−1} into itself
such that f(0) = 0. Such an f generates a function F defined by

F (anan−1 . . . a0) = f(an)f(an−1) . . . f(a0), (26)

where anan−1 . . . a0 is the number with digits an, an−1, . . . , a0 to base p. Now
we can easily prove that F is an exponential Diophantine function. Namely,
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b = F (a) if and only if there are natural numbers c0, . . . , cp−1, d0, . . . , dp−1,
k, s, u, w0, . . . , wp−1, v0, . . . , vp−1 such that

a = 0 ∗ d0 + 1 ∗ d1 + · · ·+ (p− 1) ∗ dp−1 (27)

b = f(0) ∗ d0 + f(1) ∗ d1 + · · ·+ f(p− 1) ∗ dp−1, (28)

s = d0 + d1 + · · ·+ dp−1 (29)

s =
pk+1

p− 1
, (30)

u = 2s+1, (31)

(u+ 1)s = wiu
di+1 + ciu

di + vi, (32)

vi < udi , (33)

ci < u, (34)

p - ci. (35)

This system has a solution with

di =
k∑

l=1

δi(al)p
l, (36)

where δi is the delta function: δi(i) = 1, otherwise δi(j) = 0. In this solution

wi =
s∑

k=di+1

(
s

k

)
uk, (37)

ci =

(
s

di

)
, (38)

vi =

di−1∑
k=0

(
s

k

)
uk. (39)

and for any given value of k that solution is in fact unique.
Kummer’s theorem serves as a bridge between number theory and logic

because it enables one to work with numbers as sequences of indefinite length
consisting of symbols from a finite alphabet. Application of Kummer’s the-
orem to reducing the number of unknowns resulted in a real breakthrough
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and, in one jump, that number dropped from 13 to 9. I wrote out a sketch of
the new construction and sent it to Julia. When we met for the second time
in London, Ontario, during the V International Congress on Logic, Method-
ology and Philosophy of Science, she confirmed that the proof was correct, so
I dared to present the result in my talk [8]. We hoped to be able to publish
it as an addendum to our paper in Acta Arithmetica, but it turned out to be
too late.

In 1974, the American Mathematical Society organized a symposium on
“Mathematical Developments Arising From Hilbert’s Problems” at DeKalb,
Illinois. I was invited to speak about the Tenth Problem, but my partici-
pation in the meeting did not get the necessary approval in my country, so
Julia became the speaker on the problem; however, she suggested that the
paper for the proceedings of the meeting be a joint one by Martin Davis and
the two of us. Again we had the problem of an approaching deadline. So we
first discussed by phone what topics each of us would cover. Of course, Julia
and Martin had much more communication with each other than with me.
The final difficult work of combining our three contributions into a coherent
exposition [1] was done by Martin. I believe that this paper turned out to
be one about which Julia had thought for a long time: a nontechnical intro-
duction to many results obtained by logicians in connection with Hilbert’s
tenth problem.

Writing the paper for the Proceedings prevented me from immediately
writing a paper about the new reduction to 9 unknowns (clearly it was my
turn to write it up). Unfortunately, Julia firmly refused to be a co-author.
She wrote: “I do not want to be a joint author on the 9 unknowns paper—I
have told everyone that it is your improvement and in fact I would feel silly to
have my name on it. If I could make some contribution it would be different.”

I am sure that without Julia’s contribution to [10] and without her inspi-
ration I would never have reduced N to 9. I was not inclined to publish the
proof by myself, and so the result announced in [8] did not appear in print
with a full proof for a long time. At last James P. Jones of the University
of Calgary spent half a year in Berkeley, where Julia and Raphael lived. He
studied my sketch and Julia’s comments on it, and made the proof available
to everybody in [5].

The photo accompanying this article was taken in Calgary at the end
of 1982 when I spent three months in Canada collaborating with James
as part of a scientific exchange program between the Steklov Institute of
mathematics and Queen’s University at Kingston, Ontario. Julia at that time
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was very much occupied with her new duties as President of the American
Mathematical Society and was not very active in mathematical research, but
she visited Calgary on her way to a meeting of the Society. Martin also came
to Calgary for a few days.

I conclude these reminiscences with yet another citation from Julia’s let-
ters with which I completely agree: “Actually I am very pleased that working
together (thousands of miles apart) we are obviously making more progress
than either one of us could alone.”
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