!!János Pintz - Selected publications
\\
[List of publications|List_of_publ-Janos_Pintz.pdf]
\\ \\
1.  J. Pintz,  An effective disproof of the Mertens Conjecture, Astérisque 147-148 (1987), 325-333.\\
2.  J. Pintz,  Very large gaps between consecutive primes, J. Number Theory 63 (1997), 286-301.\\
3.  R. C. Baker, G. Harman, J. Pintz,  The difference between consecutive primes II, Proc. London Math. Soc. (3) 83 (2001), 532-562.\\
4.  J. Pintz,  Recent results on the Goldbach conjecture, Elementare und Analytische Zahlentheorie (Tagungsband), Proceedings ELAZ-Conference May 24-28,  2004, Schwarz, J. Steuding Eds.,  Franz  Steiner Verlag, Wiesbaden, 2006,  pp. 220-254.\\
5.  D. A. Goldston, J. Pintz, C. Y. Yildirim,  Primes in tuples I., Annals of  Math. 170 (2009), no.2, 819-862. \\
6. D. A. Goldston, S. W. Graham, J. Pintz, C. Y. Yildirim,  Small Gaps Between  Products of Two Primes, Proc. London Math. Soc. (3) 98 (2009) 741-774.\\
7.  D.  A. Goldston, J. Pintz, C. Y. Yildirim,  Primes in tuples II, Acta Math. 204 (2010), 1-47.\\
8. J. Pintz,  Are there arbitrarily long arithmetic sequences of twin primes in arithmetic  progressions?,  An Irregular Mind, Szemerédi is 70, Bolyai Soc. Math. Studies, Vol. 21,  Eds. I. Bárány, J. Solymosi,  pp. 525-559, Springer, 2010.\\
9.  D. A. Goldston, S. W. Graham, J. Pintz, C. Y. Yildirim,  Small gaps between  almost primes, the parity problem, and some conjectures of Erdős on consecutive  integers, Int. Math. Res. Notices 7 (2011), 1439-1450. \\
10.  D. A. Goldston, J. Pintz, C. Y. Yildirim,  Positive proportion of Small Gaps Between Consecutive Primes, Publ. Math. Debrecen, 79 (2011), no.3-4, 433-444.\\
\\
His works recieved more than 1500 citations; more than 50 books cite his results.