!!Felix Otto - Selected Publications
\\
These three papers [[1 - 3] are the most cited ones of Felix Otto and are at the origin of what the Fields Medalist Cedric Villani calls ''Otto Calculus''.
\\ \\
[[1] Otto, Felix:\\
The geometry of dissipative evolution equations: the porous medium equation. \\
Comm. Partial Differential Equations 26 (2001), no. 1-2, 101–174. \\
\\
[[2]  Jordan, Richard; Kinderlehrer, David; Otto, Felix:\\
The variational formulation of the Fokker-Planck equation. \\
SIAM J. Math. Anal. 29 (1998), no. 1, 1–17.\\
\\
[[3]  Otto, Felix; Villani, Cedric:\\
Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. \\
J. Funct. Anal. 173 (2000), no. 2, 361–400.\\
\\
This paper [[4] received the Keith medal.\\
[[4] DeSimone, Antonio; Müller, Stefan; Kohn, Robert V.; Otto, Felix:\\
A compactness result in the gradient theory of phase transitions. \\
Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 4, 833–844.\\
\\
[[5] Kohn, Robert V.; Otto, Felix:\\
Upper bounds on coarsening rates. \\
Comm. Math. Phys. 229 (2002), no. 3, 375–395. \\
\\
[[6] Steiner, Jutta; Wieczoreck, Holm; Schäfer, Rudolf; McCord, Jeffrey; Otto, Felix:\\
The Formation and Coarsening of the Concertina Pattern.\\
Phys. Rev. B 85 (10) (2012) 104407.\\
\\
[[7] Doering, Charles R.; Otto, Felix; Reznikoff, Maria G.:\\
Bounds on vertical heat transport for infinite-Prandtl-number Rayleigh-Bénard convection. \\
J. Fluid Mech. 560 (2006), 229–241. \\
\\
These three papers [[8-10] started the field of a quantitative calculus in stochastic homogenization. \\
[[8] Gloria, Antoine; Otto, Felix:\\
An optimal variance estimate in stochastic homogenization of discrete elliptic equations. \\
Ann. Probab. 39 (2011), no. 3, 779–856. \\
\\
[[9] Gloria, Antoine; Otto, Felix:\\
An optimal error estimate in stochastic homogenization of discrete elliptic equations. \\
Ann. Appl. Probab. 22 (2012), no. 1, 1–28. \\
\\
[[10] Gloria, Antoine; Neukamm, Stefan; Otto, F.elix:\\
Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics. \\
Invent. Math. 199 (2015), no. 2, 455–515.