!!Patrick Cordier - Selected Publications
\\
The numbers refer to the [full publication list|https://timeman.univ-lille.fr/publications-p-cordier].\\
\\
Stress-induced amorphization is shown in [[197] to be responsible for grain boundary sliding in olivine underhigh stresses. [[203] promotes the idea that this is a deformation mechanism to be considered in minerals\\
\\
203. H. Idrissi, P. Carrez, P. Cordier (2022) On amorphization as a deformation mechanism under high stresses. Current Opinion in Solid State & Materials Science. 26(1), 100976. [https://doi.org/10.1016/j.cossms.2021.100976] (IF 11.354)\\
\\
197. V. Samae, P. Cordier, S. Demouchy, C. Bollinger, J. Gasc, S. Koizumi, A. Mussi, D. Schryvers & H. Idrissi (2021) Stress-induced amorphization triggers deformation in the lithospheric mantle. Nature 591, 82–86. [https://doi.org/10.1038/s41586-021-03238-3] (IF: 54.637)\\
\\
Nanomechanical testing is applied to antigorite in [[192] to evidence grain boundary sliding and to amorphous olivine in [[202] \\
\\
202.  P. Baral, A. Orekhov, R. Dohmen, M. Coulombier, J.-P. Raskin, P. Cordier H. Idrissi & T. Pardoen (2021) Rheological properties of amorphous olivine thin films measured by nanoindentation. Acta Materialia, 219, 117257, [https://doi.org/10.1016/j.actamat.2021.117257] (IF 8.203)\\
\\
192. H. Idrissi, V. Samaee, G. Lumbeeck, T. van der Werf, T. Pardoen, D. Schryvers & P. Cordier (2020) In Situ Quantitative Tensile Testing of Antigorite in a Transmission Electron Microscope. Journal of Geophysical Research: Solid Earth, 125(3), e2019JB018383. [https://doi.org/10.1029/2019JB018383] (IF 3.848)\\
\\
The first evolution with time of an electron tomography of dislocations is presented in [[201]\\
\\
201. A. Mussi, P. Carrez, K. Gouriet, B. Hue & P. Cordier (2021) 4D Electron Tomography of Dislocations Undergoing Electron Irradiation. Comptes Rendus Physique “Plasticity and Solid State Physics”. 22 (S3), 67-81, https://doi.org/10.5802/crphys.80 (IF 3.769)\\
\\
Dislocation dynamics modelling is applied to olivine to unify empirical flow laws\\
\\
179 K. Gouriet, P. Cordier, F. Garel, C. Thoraval, S. Demouchy, A. Tommasi & P. Carrez (2019) Dislocation dynamics modelling of the power-law breakdown in olivine single crystals: Toward a unified creep law for the upper mantle. Earth and Planetary Science Letters, 506, 282-291. [https://doi.org/10.1016/j.epsl.2018.10.049] (IF 5.255)\\
\\
Following extensive modelling of mantle minerals at the atomic scale we propose a new deformation mechanism for planetary interiors: pure climb creep [[163] which is applied to bridgmanite [[182] and transition zone minerals [[193]. This mechanism accounts well for the morphology of mantle plumes [[171]\\
\\
163 F. Boioli, P. Carrez, P. Cordier, B. Devincre, K. Gouriet, P. Hirel, A. Kraych & S. Ritterbex (2017) Pure climb creep mechanism drives flow in the Earth’s lower mantle. Science Advances, 3, e1601958, doi: 10.1126/sciadv.1601958 (IF 14.136)\\
\\
182. R. Reali, J. van Orman, J. Pigott, J.M. Jackson, F. Boioli, P. Carrez & P. Cordier (2019) The role of diffusion-driven pure climb creep on the rheology of bridgmanite under lower mantle conditions. Scientific Reports, 9, 2053. [https://doi.org/10.1038/s41598-018-38449-8] (IF: 5.133)\\
\\
171 A. Davaille, Ph. Carrez & P. Cordier (2018) Fat plumes may reflect the complex rheology of the lower mantle. Geophysical Research Letters, 45, 1349–1354. [https://doi.org/10.1002/2017GL076575] (IF 5.265)\\
\\
193. S. Ritterbex, Ph. Carrez & P. Cordier (2020) Deformation across the mantle transition zone: A theoretical mineral physics view. Earth and Planetary Science Letters, 547, 116438. [https://doi.org/10.1016/j.epsl.2020.116438] (IF 5.255)